Random Forests-based Feature Selection for Land-use Classification Using Lidar Data and Orthoimagery
نویسندگان
چکیده
The development of lidar system, especially incorporated with high-resolution camera components, has shown great potential for urban classification. However, how to automatically select the best features for land-use classification is challenging. Random Forests, a newly developed machine learning algorithm, is receiving considerable attention in the field of image classification and pattern recognition. Especially, it can provide the measure of variable importance. Thus, in this study the performance of the Random Forests-based feature selection for urban areas was explored. First, we extract features from lidar data, including height-based, intensity-based GLCM measures; other spectral features can be obtained from imagery, such as Red, Blue and Green three bands, and GLCM-based measures. Finally, Random Forests is used to automatically select the optimal and uncorrelated features for landuse classification. 0.5-meter resolution lidar data and aerial imagery are used to assess the feature selection performance of Random Forests in the study area located in Mannheim, Germany. The results clearly demonstrate that the use of Random Forests-based feature selection can improve the classification performance by the selected features.
منابع مشابه
Parcel feature data derived from Google Street View images for urban land use classification in Brooklyn, New York Cityfor urban land use classification in Brooklyn, New York Cityretain-->
Google Street View (GSV) was used for urban land use classification, together with airborne light detection and ranging (LiDAR) data and high resolution orthoimagery, by a parcel-based method. In this data article, we present the input raw GSV images, intermediate products of GSV images, and final urban land use classification data that are related to our research article "Parcel-based urban la...
متن کاملAirborne Lidar Feature Selection for Urban Classification Using Random Forests
Various multi-echo and Full-waveform (FW) lidar features can be processed. In this paper, multiple classifers are applied to lidar feature selection for urban scene classification. Random forests are used since they provide an accurate classification and run efficiently on large datasets. Moreover, they return measures of variable importance for each class. The feature selection is obtained by ...
متن کاملLand cover classification of rural areas using LiDAR data: a comparative study in the context of fire risk
In fire risk, correct description of topographic and fuel properties is critical to improve fire danger assessment and fire behaviour modelling. Many rural areas are now scanned using LIDAR sensors. In some of these areas the information registered by the sensor includes not only the geometric characteristics of the Earth’s surface, given by the coordinates (x,y,z) of the LiDAR point cloud, but...
متن کاملeEcoLiDAR, eScience infrastructure for ecological applications of LiDAR point clouds: reconstructing the 3D ecosystem structure for animals at regional to continental scales
The lack of high-resolution measurements of 3D ecosystem structure across broad spatial extents impedes major advancements in animal ecology and biodiversity science. We aim to fill this gap by using Light Detection and Ranging (LiDAR) technology to characterize the vertical and horizontal complexity of vegetation and landscapes at high resolution across regional to continental scales. The newl...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012